De criminel f2 pion, een retrograde probleem van Raymond Smullyan.

Bij deze stelling hoort een partij die door in schaakstukpakken verklede acteurs wordt nagespeeld.
Nou is bekend dat de f2-pion-acteur een misdrijf heeft gepleegd.
De g3-pion wordt er van verdacht de f2-pion te zijn.
Kun je met behulp van alleen deze stelling de (on)schuld van g3-pion aantonen?

Vragen:
1. Komt de g3-pion van f2 of van h2?
2. Als de g3-pion van h2 komt kun je dan weten waar de f2-pion nu is?

Hoewel volgens de meeste schakers er onbegrijpelijke zetten zijn gespeeld, zijn er alleen maar legale zetten gespeeld.

Hier het schitterde antwoord:

We zien dat wit schaak staat, dus zwart heeft net gespeeld.
Hoe heeft de loper op d8 dat schaak kunnen leveren?
Dat kan de loper niet zelf gedaan hebben, het moet dus een aftrekschaak zijn geweest.
Dat kan niet gebeurt zijn dmv g5-g4, immers dan stond de witte koning schaak terwijl zwart aan zet was.
Dus het moet met de koning zijn geweest.
En dat kan alleen maar door Kf6-g6.

Maar dat betekent dat voordat zwart Kf6-g6 speelde, en daarmee schaak gaf, zwart zelf ook schaak stond vanwege de witte loper op a1.
Hoe heeft die a1-loper schaak gegeven? 
De loper kan het niet zelf gedaan hebben, dus dat moet ook met een aftrekschaak zijn geweest.
Zou het b2xa3+ kunnen zijn? 
Nee, immers als de pion nog op b2 stond hoe is de loper dan op a1 gekomen? Dat kan niet.

Zou het met behulp van de e6 pion kunnen zijn?
e5-e6+ kan niet, immers dan stond zwart (de zwarte koning staat op f6) al schaak terwijl wit aan was.
Zou de e6-pion door middel van en passant slaan het aftrekschaak bewerkstelligd hebben?
Zou mogelijke kunnen, dan zouden laatste zetten als volgt moeten zijn:

Wit: d4-d5+ (De loper op a1 geeft het schaak)
Zwart: e7-e5 (heft het schaak op)
Wit: d5-e6+ ep (wederom geeft de a1-loper schaak)
Zwart: Kf6-g6+

Maar dan stond de e7-pion nog op zijn oorspronkelijke plaats en dat betekent weer dat de zwartveldige zwarte loper van f8 gesneuveld is zonder een zet te spelen,
immers het f8-veld is leeg.
Maar er staat een zwartveldige zwarte loper op d8. Dat moet dan dus een gepromoveerd stuk zijn.
Welke pion is dan gepromoveerd?
Het kan niet b7, f7, g7 en h7 zijn, die staan allemaal nog op hun oorspronkelijke plaats.
En dus ook niet e7 zijn immers er moet net e7-e5 zijn gepeeld.
Het kan ook niet de d7-pion zijn want die zal nu op g4 moeten staan.
Dus het is de a7 of de c7 pion die dan tot zwartveldige loper promoveerde.
Stel het is de a7 pion.
Aangezien de a2-pion er nog staat moet die a7 eerst naar de b-lijn en daarna weer naar de a-lijn of c-lijn, immers hij moet op een zwart veld promoveren.
Dus die a7-pion heeft dan 2x geslagen.
De pion op g4 kan alleen maar van d7 komen en heeft dus 3x geslagen.
En de pion op d3 is dus de oorspronkelijke c7-pion en heeft dus 1x geslagen.
Totaal zijn dat 6 slagzetten. Maar er staan 11 witte stukken op het bord, dus zwart kan maar 5x geslagen hebben.
Dus de a7-pion kan niet tot zwartveldige loper zijn gepromoveerd.
Stel het is de c7-pion, die kan in een rechte lijn naar c1 lopen en promoveren tot zwartveldige loper.
Maar dan moet de d3-pion van a7 komen, en heeft dus 3x geslagen.
Ja en de pion op g4 moet van d7 komen en heeft ook 3x geslagen.
En weer zijn 6 slagzetten nodig, wat niet kan.
Dus de zwart loper op d8 is geen gepromoveerd stuk, en dus is het de oorspronkelijk loper van f8 en dus heeft de e7-pion al eerder plaats gemaakt voor die loper en dus heeft de witte pion op e6 niet zojuist en passant geslagen.
Hoe simpel kan het zijn?

Maar hoe heeft die loper op a1 dan dat schaak gegeven?
Geen van de andere witte stukken op het bord kan het aftrekschaak bewerkstelligd hebben.
Dus het is door middel van een stuk dat niet meer op het bord staat.
Maar na het aftrekschaak van wit was er maar een zet: de zwarte koning van f6 naar g6.
Dus het witte stuk dat het aftrekschaak bewerkstelligde is net gesneuveld op g6.
En dus kan het schaak alleen door middel van Pe5-g6+ zijn geweest.
Daarna speelde zwart dus Kf6xg6+.
Maar wit heeft al paarden op c7 en h3.
Dus toen wit Pe5-g6+ speelde stonden er 3 witte paarden op het bord.
Dus een van die paarden is een gepromoveerd stuk.
(Besef dat de acteur die de promoverende pion speelde zich moest verkleden tot paard toen hij de achtste rij bereikte)

Stel nou de pion op g3 komt van f2.
Er staan 7 witte pionnen op het bord en de 8-ste is dus een paard geworden.
Welke pion kan dat zijn?
De a3 pion komt van b2, en de a6 pion komt dan van c2, dat is 3x slaan bij elkaar.
De a2 e2 en g2 pion staan nog op hun oorspronkelijke plaats.
De d2 pion kan dan op d8 tot paard zijn gepromoveerd.
De g3 pion komt dus van f2, dat is 1x slaan.
En de pion op e6 moet dan dus van h2 komen, daar is 3x slaan voor nodig.
Totaal is dat 7x slaan.
Maar er staan 10 zwarte stukken op het bord, dus er kan maar 6x geslagen zijn door wit.
En als het dan de h2 pion was die promoveerde tot paard?
Nou ook dan hebben de a3 en a6 pion samen weer 3x geslagen.
De e6 pion komt dan van d2, 1x slaan dus.
En de g3-pion dus van f2, 1x slaan.
Maar de h2-pion moet minimaal de e-lijn bereiken om te kunnen promoveren, dus 3x slaan.
Dat is bij elkaar 8x slaan, en dat kan al helemaal niet.

Dus de g3 pion kan van niet f2 komen.

Dus de g3-pion komt van h2 en is onschuldig.
Wat kan er dan met de witte pionnen zijn gebeurd?
De a3 komt van b2, de a6-pion komt van c2 en de g3-pion van h2, dat is 4x slaan.
De d2-pion is op d8 tot paard gepromoveerd.
En de f2-pion, onze boef, staat op e6, 1x slaan.
Bij elkaar 5x slaan en dat kan.
Maar wat ook kan is dat de f2-pion op e8 tot paard is gepromoveerd, 1x slaan.
En dan komt de e6-pion van d2, 1x slaan.
Voor a3,a6 en g3 is het samen weer 4x slaan.
Nu is het bij elkaar 6x slaan, en dat kan ook.

Dus aan de hand van de stelling kunnen we niet weten waar de f2-pion nu is.
Het kan de e6-pion zijn.
Het kan één van de twee paarden (op c7 en h3) op het bord zijn.
Maar het kan ook het zojuist op g6 geslagen paard zijn, en mogelijk is het vogeltje (verkleed als wit paard) dan al lang gevlogen.
Dan had je het probleem maar sneller moeten oplossen…